गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

$1,-a, a^{2},-a^{3}, \ldots n$ पदों तक (यदि $a \neq-1)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given $G.P.$ is $1,-a, a^{2},-a^{3} \ldots \ldots$

Here, first term $=a_{1}=1$

Common ratio $=r=-a$

$S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$

$\therefore S_{n}=\frac{1\left[1-(-a)^{n}\right]}{1-(-a)}=\frac{\left[1-(-a)^{n}\right]}{1+a}$

Similar Questions

अनंत गुणोत्तर श्रेणी $\frac{{\sqrt 2  + 1}}{{\sqrt 2  - 1}},\frac{1}{{2 - \sqrt 2 }},\frac{1}{2}.....$ के पदों का योग होगा

संख्याओं $3,\,{3^2},\,{3^3},....,\,{3^n}$ का गुणोत्तर माध्य होगा   

एक समान्तर श्रेणी, गुणोत्तर श्रेणी तथा हरात्मक श्रेणी समान प्रथम तथा अन्तिम पद रखते हैं। तीनों श्रेणियों में पदों की संख्या विषम है, तब तीनों श्रेणियों के मध्य पद होंगे

समीकरण $1 + a + {a^2} + {a^3} + ....... + {a^x}$ $ = (1 + a)(1 + {a^2})(1 + {a^4})$ के लिए $x$ का मान है

यदि $a , b , c , d$ तथा $p$ कोई भी अशून्य वास्तविक संख्याएँ हैं, कि $\left( a ^{2}+ b ^{2}+ c ^{2}\right) p ^{2}-2( ab + bc + cd ) p +\left( b ^{2}+ c ^{2}\right.$ $\left.+ d ^{2}\right)=0$, है, तो

  • [JEE MAIN 2020]